Chapter 12
Algorithmic State Machine

12.0 Introduction

In Chapter 10, we introduced two models of synchronous sequential network, which are Mealy and Moore machines. In this chapter, we would like to introduce another approach of designing synchronous sequential network using flowchart, which is similar to those used in computer programming. This is called algorithmic state machine ASM. Designing using ASM allows handling of more complex system than state diagram shown in earlier chapter.

12.1 Algorithmic State Machine

An approach of digital design is to partition the system into a controller and a controlled architecture also called data processor, which is shown in Fig. 12.1.

![Figure 12.1: Partition of digital system](image)

Data processor is a hardware required for data manipulation that may consist of adder, subtractor, shift register, and etc and output the results. In addition to this function, the data processor also provides status of the data manipulation to the controller.

The controller, which is also termed as ASM, provides sequence of command to data processor. It is called ASM because it consists of well defined finite number of step to the solution of a process.

The external input is used to provide the task required to be carried out by the controller. The input data is used in the manipulation.
12 Algorithmic State Machine

The model of algorithmic state machine ASM is shown in Fig. 12.2. The machine is viewed as the combination of Mealy and Moore machines.

![Model of Algorithmic State Machine](image)

Figure 12.2: Model of Algorithmic State Machine

Next state and memory blocks are similar for both Mealy and Moore machines. Conditional output function block is similar to that of a Mealy machine, whilst state output function block is similar to that of a Moore machine.

12.2 Algorithmic State Machine Chart

The algorithmic state machine SM chart can be divided into three blocks namely the state box, the decision box, and the conditional output box. They are shown in Fig. 12.3.

![Algorithmic State Machine Chart](image)

Figure 12.3: The algorithmic state machine blocks
The state box contains an output list, state name, and optional state code. The decision box is a usual diamond shaped symbol with true and false evaluate to decide the branches. The conditional output box contains conditional output list. The conditional outputs depend on both the state of system and the inputs.

Let’s consider an ASM chart shown in Fig. 12.4 and use it to explain the flow of the sequence.

One entrance path

![ASM Chart Diagram](image)

Figure 12.4: An ASM chart showing the state box, conditional box, and decision box

When state S_1 entered, output Y_1 and Y_2 become “1”. If inputs X_1 and X_2 are both equal to 0, Y_3 and Y_4 are also “1”, and at the end of state time the machine goes to the next state via exit path 1. If inputs $X_1 = “0”$ and $X_2 = “1”$, Y_3 and Y_4 are “1”, the exit to next state is via path 2.

On the other hand, if $X_1 = “1”$ and $X_3 = “0”$, the output Y_5 is “1” and exit to the next state will occur via exit path 3. If $X_1 = “1”$ and $X_3 = “1”$, the exit to the next state will occur via path 4.
12.3 Conversion of State Diagram to Algorithmic State Machine Chart

Let’s consider the state diagram of a SR flip-flop and see how it is being converted into an ASM chart. From the excitation equation of an SR flip-flop, which is \(Q_{n+1} = S + Q_n \cdot \overline{R}\), the state diagram of a SR flip-flop is derived and shown in Fig. 12.5.

![Figure 12.5: State diagram of a SR flip-flop](image)

The simplified form with Boolean expressions is shown in Fig. 12.6.

![Figure 12.6: The simplified form of state diagram for SR flip-flop](image)

Based on the state diagram shown in Fig. 12.5, the ASM chart of the SR flip-flop is shown in Fig. 12.7.

The initial state of the flip-flop is \(Q = “0”\), when the decision \(S \cdot \overline{R}\) is true, the flip-flop will change state to \(Q = “1”\). When it is not true, which shall mean \(\overline{S} \cdot \overline{R} = S + R \), it would hold its state at \(Q = “0”\).

When the decision \(\overline{R} \) is true, the flip-flop will hold its state at \(Q = “1”\). When the decision \(\overline{R} \) is not true, which is \(R\) is true, the flip-flop will change state to \(Q = “0”\).
Let’s consider an example of sequential network shown in Fig. 12.8. This sequential network contains both Mealy and Moore outputs. The Mealy output is depending on the present state and input state X. Thus, output Y_1 and Y_2 should be conditional outputs and they are to be resided in the conditional box. Output Y_a, Y_b, and Y_c are Moore outputs. They do not depend on the state of input X. Thus they should reside in the state box. Input X can be either “0” or “1”. Thus, it should be resided in decision box.
The ASM chart of the state diagram shall then be as shown in Fig. 12.9.

After entering to state S_0, the output Y_a becomes “1”. State S_0 will change to state S_1 only when condition of input $X = “1”$ and output Y_b will become “1”. If $X = “0”$ then the state remains unchange and output becomes 0.

State S_1 will change to state S_2 only when condition of input $X = “1”$ and output Y_c becomes “1”. If $X = “0”$ then state S_1 will transition back to state S_0. Thus, one can see that output Y_c is always “1”.

If $X = “1”$ and $Y_2 = “1”$ then the state S_2 remains unchanged. If $X = “0”$ and output $Y_1 = “1”$, then state changes to S_0.
12.4 Design the Circuit with ASM Chart

The Boolean expression of the outputs shall be determined from the type, the state conditions, and input conditions that used to obtain them.

The next state equation for the flip-flop Q shall be obtained from the following procedure.

- Identify all the states in which $Q = \text{"1"}$.
- For each of these states, find all the link paths that lead into the state.
- For each of these link paths, find a term that is “1” when the path is followed. That is for a link path from S_i to S_j, the term will be “1” if the machine is in state S_i and the conditions for exiting to S_j are satisfied.
- The Boolean expression for next state flip-flop output Q^+ is formed by ORing together the states found in above step.

We shall use the ASM chart shown in Fig. 12.8 to derive the Boolean expressions for the outputs and next state equations this sequential network.

The assignment of the state shall be $S_0 = \overline{A} \cdot \overline{B} = \text{"00"}$, $S_1 = \overline{A} \cdot B = \text{"01"}$, and $S_2 = A \cdot B = \text{"11"}$. Note that A is the MSB, whilst B is LSB.

Since the Moore output Y_a and Y_b are only present state dependent, therefore, the output $Y_a = \overline{A} \cdot \overline{B}$, $Y_b = \overline{A} \cdot B$ and $Y_c = A \cdot B$.

The Boolean expressions for Mealy output shall be $Y_1 = A \cdot B \cdot \overline{X}$ and $Y_2 = A \cdot B \cdot X$.

Following the procedure listed above link path 1, 2 and 3 are identified for determining the next state equation for the flip-flop.

Let’s begin with LSB bit B. Path 1 has B transition from “0” to “1”. Thus, the Boolean expression for this transition is $\overline{A} \cdot \overline{B} \cdot X$. For path 2, B is transition from “1” to “1”. Thus, the Boolean expression for this path is $\overline{A} \cdot B \cdot X$. For path 3, B is also transition from “1” to “1”. Thus, its Boolean expression is $A \cdot B \cdot X$. ORing these Boolean expressions shall form the next state B^+ equation for the LSB of the flip-flop. Thus, the next state equation for LSB B is $B^+ = \overline{A} \cdot \overline{B} \cdot X + \overline{A} \cdot B \cdot X + A \cdot B \cdot X$.

- 153 -
For Path 1, A is transition from “0” to “0”, which does not lead to \(Q = “1” \). Thus, it is not necessary to obtain the Boolean expression for this path. For path 2, A is transition from “0” to “1”. Its Boolean expression shall be \(\overline{A} \cdot B \cdot X \). For path 3, A is transition from “1” to “1”. Its Boolean expression is \(A \cdot B \cdot X \). ORing all these Boolean expressions shall form the next state \(A^+ \) equation for the MSB A of flip-flop. The next state equation for A shall be \(A^+ = \overline{A} \cdot B \cdot X + A \cdot B \cdot X \).

Now that we have obtained all the necessary Boolean expressions and next state equations. A state table can then be obtained. Deciding the flip-flop type to be used, obtaining next input of flip-flop, using optimization technique to reduce the state, and finally draw the circuit diagram.

The design using D flip-flop is shown in Fig. 12.10. Student is encouraged to list the state table from the state equations.

Let’s consider another example of design using ASM chart.

A start signal S starts the system by clearing a 4-bit binary counter A \((A_3, A_2, A_1, \text{ and } A_0)\) and flip-flop F. With the next clock pulse the counter is
incremented. The counter continues to be incremented until the operation stop. The counter bit A_3 and A_2 are used to control the sequence.

If $A_2 = 0$ flip-flop E is cleared and continues counting.
If $A_2 = 1$ flip-flop E is set.
 If $A_3 = 0$ the count continues.
 If $A_3 = 1$ flip-flop F is set on next clock pulse and the system stops counting.

Based on the design statement, the ASM chart for the system is shown in Fig. 12.11.

Based on the ASM chart, the flip-flop F and binary counter are reset by Boolean expression $SCB \cdot \overline{C} \cdot S$, whereby B is the MSB and C is LSB of state. Flip E is set by Boolean expression $\overline{B} \cdot C \cdot A_2$ and reset by Boolean expression $\overline{B} \cdot C \cdot \overline{A_2}$.

Figure 12.11: ASM chart of the design example
12 Algorithmic State Machine

Flip-flop F is set by Boolean expression $B \cdot C$. The binary counter is incremented by Boolean expression $\overline{B} \cdot C$.

If JK flip-flops are used as the flip-flop E and F, then the J input of flip-flop E is $J_E = \overline{B} \cdot C \cdot A_2$. The K input of flip-flop E is $K_E = \overline{B} \cdot C \cdot \overline{A_2}$. The J input of flip-flop F is $J_F = B \cdot C$. The K input of flip-flop F is $K_F = \overline{B} \cdot \overline{C} \cdot S$.

The block diagram of the design is shown in Fig. 12.12.

![Block diagram of the system design for ASM shown in Fig. 12.11](image)

The sequence circuit is designed based on the procedure listed at the beginning of this section.

The next state equation for bit B is $B^+ = \overline{B} \cdot C \cdot A_2 \cdot A_3$, which is shown by the red path in Fig. 12.13.

There are four paths shown in blue in Fig. 12.13 for the next state equation of bit C. Thus, the next state equation for bit C is $C^+ = \overline{B} \cdot \overline{C} \cdot S + \overline{B} \cdot C \cdot A_2 \cdot \overline{A_3} + \overline{B} \cdot C \cdot A_2 \cdot A_3 + \overline{B} \cdot C \cdot A_2$.

Based on the above results, the next-state and output state table is shown in Fig. 12.14.
Figure 12.13: The next state paths of ASM shown in Fig. 12.11

<table>
<thead>
<tr>
<th>Present State</th>
<th>Present State</th>
<th>Input</th>
<th>Next State</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>B</td>
<td>C</td>
<td>S</td>
<td>A₂</td>
</tr>
<tr>
<td>S₀</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>X</td>
</tr>
<tr>
<td>S₀</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>X</td>
</tr>
<tr>
<td>S₁</td>
<td>0</td>
<td>1</td>
<td>X</td>
<td>0</td>
</tr>
<tr>
<td>S₁</td>
<td>0</td>
<td>1</td>
<td>X</td>
<td>1</td>
</tr>
<tr>
<td>S₁</td>
<td>0</td>
<td>1</td>
<td>X</td>
<td>1</td>
</tr>
<tr>
<td>S₂</td>
<td>1</td>
<td>1</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>X</td>
<td>1</td>
<td>0</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

Figure 12.14: The next-state and output state table
12 Algorithmic State Machine

If the sequencer circuit is designed using D-flip flop then the input D_C of flip-flop C shall be:

$$D_C = \overline{B} \cdot \overline{C} \cdot S + \overline{B} \cdot C \cdot A_2 \cdot \overline{A_3} + B \cdot C \cdot A_2 \cdot A_3 + \overline{B} \cdot C \cdot \overline{A_2} =$$

$$\overline{B} \cdot \overline{C} \cdot S + \overline{B} \cdot C$$

and for input D_B of flip-flop B shall be:

$$D_B = \overline{B} \cdot C \cdot A_2 \cdot A_3.$$

The state “10” is a don’t care state, the state table of output S_0, S_1 and S_2 are shown in Fig. 12.15.

<table>
<thead>
<tr>
<th>Input</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>C</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Figure 12.15: State table of output S_0, S_1, and S_2

Based on the state table shown in Fig. 12.15, the Boolean expressions for S_0, S_1, and S_2 are respectively equal to $S_0 = \overline{C}$, $S_1 = \overline{B} \cdot C$, and $S_2 = B$.

The design of the sequencer circuit shall then be as shown in Fig. 12.16.

Figure 12.16: The circuit design of sequencer circuit
Replacing the sequencer circuit shown in Fig. 12.12 with the circuit shown in Fig. 12.16 would complete the design of the system as specified by the ASM chart shown in Fig 12.11.

Tutorials

12.1. Draw an ASM chart for a JK flip-flop.

12.2. Use the ASM chart to derive the Boolean expression for output Y_1.

12.3. Draw the ASM chart based on this state diagram and implement this machine using D flip-flop.
12 Algorithmic State Machine

12.4. Convert the ASM chart shown below into state diagram

12.5. Using the ASM chart shown in Fig. 12.9 to design the circuit using D flip-flop.

12.6. Derive the Boolean expressions of the output and next state equations for the machine with ASM chart shown below. Also draw the state table and design for the machine if D flip-flop is chosen for the design.
12.7. Using the ASM chart shown in Fig. 12.11, draw the state diagram of sequencer.

References

12 Algorithmic State Machine

This page is intentionally left blank